DNA-binding specificity and dimerization of the DNA-binding domain of the PEND protein in the chloroplast envelope membrane.
نویسندگان
چکیده
The PEND protein is a DNA-binding protein in the inner envelope membrane of a developing chloroplast, which may anchor chloroplast nucleoids. Here we report the DNA-binding characteristics of the N-terminal basic region plus leucine zipper (bZIP)-like domain of the PEND protein that we call cbZIP domain. The basic region of the cbZIP domain diverges significantly from the basic region of known bZIP proteins that contain a bipartite nuclear localization signal. However, the cbZIP domain has the ability to dimerize in vitro. Selection of binding sites from a random sequence pool indicated that the cbZIP domain preferentially binds to a canonical sequence, TAAGAAGT. The binding site was also confirmed by gel mobility shift analysis using a representative binding site within the chloroplast DNA. These results suggest that the cbZIP domain is a unique DNA-binding domain of the chloroplast protein.
منابع مشابه
Molecular characterization of the PEND protein, a novel bZIP protein present in the envelope membrane that is the site of nucleoid replication in developing plastids.
Plastid nucleoids are known to bind to the envelope membrane in developing chloroplasts. Here, plastid DNA is extensively replicated. We previously detected a DNA binding protein in the inner envelope membranes of developing plastids in pea and named it PEND (for plastid envelope DNA binding) protein. In this study, we report on the structure and molecular characterization of a cDNA for the PEN...
متن کاملRapid purification of HU protein from Halobacillus karajensis
The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...
متن کاملDNA REPLICATION AND SYNTHESIS OF DNABINDING PROTEINS IN THE CHLOROPLASTS OF A CALLUS CULTURE
Continuous labelling of callus with H-thymidine results in intermittent peaks of H-DNA per chloroplast, showing synchrony of division. The increase in H-DNA could be due to several replication rounds, and the drop to successive plastid divisions without intervening DNA synthesis. The level of DNA-binding proteins in the chloroplast parallels the peaks of plastidal DNA synthesis; such pro...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 29 11 شماره
صفحات -
تاریخ انتشار 2001